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Abstract

Vrentas and Vrentas (Eur Polym J, 34 (1998) 797) have provided a method of evaluating diffusion coefficients using free volume theory,
wherein all parameters can be estimated from the available experimental physical data or best estimates from approximate correlations (e.g.
from a knowledge of the density, isothermal expansion coefficient, etc.). This method is tested using data for diffusion of methyl methacrylate
and butyl methacrylate monomers in mixtures of the monomer and both polymers above the glass transition, over a range of polymer weight
fraction and temperature (aboveTg) (Macromolecules, 31 (1998) 7835). It was found that the predictions are reasonable for the well-studied
MMA/PMMA system (although the predicted effective activation energy was poor), but the a priori predictions were in significant error for
the other systems. The Vrentas method can be used reliably for interpolation and extrapolation of limited data, although because the predicted
activation energies are too low, care should be taken with extrapolation over a significant temperature range.q 2000 Elsevier Science Ltd.
All rights reserved.
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1. Introduction

Knowledge of diffusion coefficients of small penetrants in
both rubbery and glassy polymeric matrices as a function of
temperature and amount of diluent is often of considerable
importance to both the experimentalist and theoretician.
Major uses include modelling rates and molecular weight
distributions in free-radical polymerization, and permeabil-
ity studies. The availability of reliable experimental data in
recent times has increased, due to the development of new
techniques, and improvements in existing techniques, such
as Pulsed-Field Gradient NMR [1] (PFG NMR). Although
the reliability of experimental data in such systems has
improved, the experiments are still complex and time-
consuming. A theory that can be used reliably for quantita-
tive prediction is clearly desirable.

One of the most popular models for diffusion of small
penetrants in polymeric matrices is free volume theory. An
extensive development has been given by Vrentas and Vren-
tas [2–9] with extensive refinements to improve the agree-
ment between theory and available experimental data. In a
recent paper, Vrentas and Vrentas [9] gave a detailed
account of a means to predict most of the parameters for
their treatment from physical data (experimental, or esti-

mated from empirical correlations) for the penetrant and
polymer matrix. In principle, this means it should thus be
possible topredictdiffusion coefficients of small penetrants
in polymeric matrices, even for completely new systems,
using only data obtained from qualitatively different sources
(e.g. viscosity and density information).

In a recent study in a companion paper to the present one
[10] it was shown that this parametrization of free-volume
theory could not be successfully used to predict the diffusion
coefficients for camphorquinone in glassy PMMA.
However, use of the theory in glassy polymeric matrices
is more complex than for the rubbery systems for which
the model was originally developed. Furthermore, the
fundamental premises of free volume theory may fail in
glassy systems, where the diffusion mechanism may be
qualitatively different from that assumed in the free-volume
approach [10–15]. Thus it is not surprising that the predic-
tions of the theory are not in good accord with the experi-
mental data in such cases.

In this present paper, the predictions of free volume
theory using parameters as described by Vrentas and Vren-
tas [9] are compared with recent PFG NMR data for mono-
mers in rubbery PBMA and PMMA matrices over a range of
monomer/polymer ratios and temperatures [16]. The
primary objective is to test the validity of the method for
prediction of diffusion coefficients using the parameter-esti-
mation scheme described by Vrentas and Vrentas [9] in a
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system where reliable experimental diffusion coefficients
measured over a range of matrix and penetrant type, poly-
mer weight fraction (wp) and temperature are available. In
some cases, physical data for the estimation of some para-
meters were not readily available. In such cases, empirical
correlations have been used to estimate the values of physi-
cal constants. The objective of the present paper is to test the
a priori predictive powers of this treatment for a family of
systems for which extensive data have been determined, but
for which very few physical data are available. This exam-
ination of the theory is a test of how the model performs
under difficult conditions.

A secondary objective of this study is to see if minimal
reasonable adjustments of these calculated free volume
parameters can give improved agreement between theory
and experiment when limited experimental data are avail-
able, and thus to see if the free-volume treatment of Vrentas
and Vrentas can be used to extrapolate and interpolate, a
task which is less demanding than complete a priori
prediction.

2. Free volume treatment

The free volume treatment of Vrentas and Vrentas [2–9]
has undergone considerable development since its initial
formulation. The central concept to free volume theory is
that movement through the available free volume in the
matrix governs diffusion of small penetrants in polymeric
matrices. Thus, the diffusion coefficients predicted by the
theory are strongly dependent on the “space-filling” proper-
ties of both the penetrant (diluent) and matrix.

The model has been shown to give good agreement with
experimental data in a number of systems, when used in a
correlative sense. The more recent developments to the
theory have included extensions to predict all (or most) of
the necessary parameters from available physical data [9]. It
is this version of the theory that is used in the current study.

The basic formulation used by Vrentas and Vrentas [9]
for the prediction of diffusion coefficients by free volume
theory is as follows:

ln D1 � ln �D0 2
Ep

RT
2

�1 2 v2�V̂p
1 1 jv2V̂p

2

V̂FH=g

( )
�1�

where D1 is the diffusion coefficient of the penetrant
(species 1), �D0 a constant,Ep the effective energy per
mole that a molecule needs to overcome attractive forces,
R the gas constant,T the temperature,j the ‘size parameter’,
V̂ p

1 andV̂p
2 are the specific volumes of penetrant and poly-

mer, respectively,̂VFH the average hole free volume per unit
mass of mixture,g an average overlap value in the mixture,
andv2 � wp:

For rubbery systems,̂VFH=g can be calculated as follows:

VFH=g � �1 2 v2� K11

g1

� �
�K21 1 T 2 Tg1�1 v2 V̂FH2=g2 �2�

where �K11=g1� and �K21 2 Tg1� are solvent free-volume
parameters, and̂VFH2=g2 is the contribution to the average
hole free volume from the polymer matrix (component 2).
The expression for̂VFH2=g2 depends on whether the system
is above or below the glass transition temperature of the
matrix:

V̂FH2 � V̂0
2�Tg2��f G

H2 1 a2�T 2 Tg2�� T $ Tg2 �3a�

V̂FH2 � V̂0
2�Tg2��f G

H2 1 �a2 2 ac2��T 2 Tg2�� T , Tg2 �3b�
Here V̂0

2�Tg2� is the specific volume of the polymer atTg2;

f G
H2 the fractional hole volume of the polymer atTg2, a2 the

thermal expansion coefficient for the equilibrium liquid
polymer,a c2 the thermal expansion coefficient for the sum
of the specific occupied volume and the specific interstitial
free volume for the equilibrium liquid polymer,Tg2 the glass
transition temperature of the pure polymer, andg2 the over-
lap factor for free volume of pure polymer. The parameters
are calculated as follows:

f G
H2 � a2K22; ac2 � 1

Tg2
ln

V̂0
2�Tg2��1 2 f G

H2�
V̂0

2�0�

 !
;

g2 �
V̂0

2�Tg2�a2

�K12=g2�

�4�

V̂p
1 � V̂0

1�0�; V̂p
2 � V̂0

2�0� �5�
where K22 is one of the polymer free-volume constants,
V̂0

1�0� andV̂0
2�0� are the specific volumes of the equilibrium

liquid penetrant and polymer atT � 0 K; respectively, and
(K12/g2) is a polymer free-volume parameter.

The free-volume parametersK22 and (K12/g2) are stated to
be calculated by the expressions:

K22 � �Cg
2�2;

K12

g2

� �
� V̂p
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where�Cg
1�2 and�Cg

2�2 are WLF constants for the polymer.
The value ofj is estimated as follows:

j � jL

1 1 jL�1 2 � �A= �B�� ; jL � ~V0
1�0�= ~Vp

2 �7�

where ~V0
1�0� is the molar volume of the equilibrium liquid

solvent (penetrant) atT � 0 K; � �B= �A� is the aspect ratio of
the solvent molecule and~Vp

2 the critical free volume per
mole of jumping units required for a jump.Ep is estimated
from the solubility parametersd1 andd2 of the penetrant and
polymer using a ‘universal’ plot [9, Fig. 1], which for the
present paper was fitted by:

log10�Ep
=cal mol21�

� 0:8988 ln{log�d1 2 d2�2 ~V0
1=cal mol21} 1 2:8377

�8�

It is possible with this expression to predict meaningless
values forEp when the difference in solubility parameters
is too small, due to the ln(log(x)) part of the expression.
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Undefined or negative values correspond to very small
values ofEp, and are replaced byEp � 0:

Methods have been given for a priori estimates of most of
the parameters necessary for the above calculations in Ref.
[9] These methods were used, where practical, for the esti-
mation of the necessary parameters in the following section.

3. Estimation of parameters

The necessary parameters for the model were evaluated
by the techniques given by Vrentas and Vrentas [9] Several
of the parameters used in the basic formulation are derived
from expressions using available physical data, as described
in detail later. The derived parameters are as follows:

• V̂0
1�0� (and thus ~V0

1�0�) and V̂0
2�0� were calculated from

group contribution methods described in Ref. [17].
• ~Vp

2 was obtained from tabulated data, or fromTg2.
• f G

H2 was calculated froma2 andK22.
• K22 was calculated from the WLF constant�Cg

2�2:
• (K12/g2) was calculated from̂Vp

2 and the WLF constants
�Cg

1�2 and�Cg
2�2:

• g c2 was calculated from̂V0
2�Tg2�; a2 and (K12/g2).

• a c2 was calculated from̂V0
2�Tg2�; f G

H2; V̂0
2�0�; andTg2.

• jL was calculated from̂V 0
1�0� and ~Vp

2:

• j was calculated from� �B= �A� andjL.
• Ep was calculated usingd1 andd2.
• �D0; �K11=g1�; and �K21 2 Tg1� were obtained from visc-

osity–temperature and density–temperature data.
• V̂0

2�Tg2� was calculated from density at a reference
temperature andepol (the specific thermal expansivity of
the polymer).

• V̂0
1�T� was calculated from empirical correlations and

group contribution methods described in Ref. [18] since
thermal expansivity data for the penetrants were unavail-
able. The required raw data for the correlations wereM1

and the boiling point for the penetrant (Tb).
• ~Vc was calculated from group contribution methods

described in Ref. [18].

A number of the physical quantities necessary for the esti-
mation of the free volume theory parameters are readily
available from the common literature. Several other para-
meters can be obtained by estimation from other physical
data and empirical correlations, such as found in Ref. [18]
Two exceptions to the listed techniques were used:

(a) Although in principle the aspect ratio� �B= �A� can be
calculated using the ADAPT method [19] the software
for doing this calculation is not easily implemented, and
thus� �B= �A� was estimated by examination of space-filling
models of the penetrants using Hyperchemw software.
(b) Tabulated data for~Vp

2 were not available for all
systems, and an alternative estimate was made, based
on a previously published correlation.

The requisite physical constants are as follows.

• Volumetric data:V̂0
2�298 K�(from density of the poly-

mers at 298 K) anda2.
• Glass transition temperatures:Tg1 andTg2.
• WLF constants: the WLF constants�Cg

1�2 and�Cg
2�2:

• The solubility parameters for the monomers and poly-
mers:d1 andd2.

• The molecular weights of the penetrants:M1.
• The boiling points of the penetrants:Tb.
• The specific thermal expansivity of the polymers:epol.
• The values of the aspect ratios� �B= �A� for each penetrant

were crudely estimated.

Three of the necessary parameters were derived from visc-
osity–temperature and density–temperature data for the
penetrant (solvent). The relationship between viscosity
(h1) and temperature comes from an expression by Dullien
[20] and manipulated by Vrentas and Vrentas [9] to give:

ln h1 � ln
0:124× 1027 ~V2=3

c RT

M1V̂0
1�T�

 !
2 ln �D0

1
V̂p

1

�K11=g1��K21 1 T 2 Tg1� �9�

where ~Vc is the molar volume of the penetrant at its critical
temperature,M1 is the molecular weight of the penetrant,
and V̂0

1�T� is the specific volume of the penetrant (the
inverse of the density) at the temperature of interest.

Correct choice of units is crucial in the use of this expres-
sion, and the constant 0:124× 1027 has been changed from
the original value of 0:124× 10216 given in Vrentas and
Vrentas [9] to reflect this. The correct units to use with
this expression areh1 in centipoise, ~Vc in cm3 mol21, M1

in g mol21, R in J K21 mol21, V̂0
1�T� in cm3 g21, V̂p

1 is in cm3

g21, and the final�D0 value is given in cm2 s21. The factor of
109 difference arises because the original derivation of the
correlation did not use SI units, resulting in an expression
with a coefficient�0:124× 10216� that was dependent on
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Fig. 1. Specific volume as a function of temperature for the BMA penetrant,
as predicted using Eq. (13).



using the same units. The ‘new’ coefficient is appropriate for
use with the units listed above.

A non-linear least-squares fit to Eq. (9), when used with
viscosity–temperature and density–temperature relation-
ships, gives three fitting constants, corresponding to the
parameters �D0 (cm2 s21), (K11/g1) (cm3 g21 K21), and
�K21 2 Tg1� �K�:

In the systems tested here, the non-linear least-squares
regression analysis could be reduced in complexity by line-
arisation of the specific volume–temperature data, which is
expected to be usually accurate in a rubbery system. An
example of the dependence of specific volume on tempera-
ture used in this study is shown in Fig. 1 for BMA; the
method of obtaining this dependence is described in Eqs.
(10)–(13) below. This dependence can be very well
approximated by an expression of the formVspec�T� �
V̂0

1�298�1 epen�T 2 298�; whereVspec�T� �� V̂0
1�T�� is the

specific volume of the penetrant at temperatureT, epen is the
specific thermal expansivity for the penetrant (in
cm3 g21 K21), and V̂0

1�298� is the specific volume of the
penetrant at 298 K (this can be modified for another refer-
ence temperature if necessary). The value ofepen is not the
same as the value ofepol (the value for the polymer, as
opposed to the penetrant), and is either calculated from
the literature data, or estimated from the existing or
predicted specific volume–temperature data. If the experi-
mental data used for the specific volume–temperature fitting
can be approximated by a linear expansion of specific
volume with temperature, the fitting is significantly simpli-
fied. The final expression to find�D0; �K11=g1� and �K21 2
Tg1� by least-squares fitting is then:

ln h1 � ln
0:124× 1027 ~V2=3

c RT

M1�V̂0
1�298�1 epen�T 2 298��

 !
2 ln �D0

1
V̂p

1

�K11=g1��K21 1 T 2 Tg1� �10�

such that only one variable without a given functional form
(h1) is required; further details are given later.

For the systems tested here, neither critical volume nor
viscosity–temperature data (to find�D0; �K11=g1� and�K21 2
Tg1� using Eq. (10)) were readily available. These values
were estimated as follows using empirical correlations
provided in Ref. [18]

Group contribution methods and Eq. (11) were used to
estimate the critical volume:

~Vc � 33:041
X

i

�Mi DVi�
 !1:029

�11�

whereMi andDVi are the mass and volume contributions
from each group, respectively. The group volume contribu-
tions are tabulated in Ref. [18] The average error in the
predicted values from use of this correlation is approxi-
mately 1%, up to a maximum of 6% for complex liquids.

The viscosity–temperature data were estimated using a

very crude correlation based on the density of the penetrant
[21]:

log10�log10�10× h1�� � I
M1

r 2 2:9 �12�

whereI is Souders’ index, which is determined from group
contributions given in Ref. [21] andr is the density
(g cm23). Typical errors from the use of this expression
are of the order of 10%. Since insufficient density–tempera-
ture data are available for the present systems, the specific
viscosity–temperature data were estimated by use of an
empirical correlation quoted by Perry: [18]

ln �VsatPc=RTc� � �ln U�0 1 v�ln U�1 �13�
whereVsat(cm3 mol21) is the saturated-liquid molar volume,
Pc is the critical pressure,v the acentric factor, and (lnU)0

and (lnU)1 are functions of the reduced temperature�Tr �
T=Tc� [18]:

�ln U�0 � ln Tr 1 1:396442 24:076Tr 1 102:615T2
r

2 255:719T3
r 1 355:805T4

r 2 256671T5
r

1 75:1088T6
r �14a�

�ln U�1 � 13:44122 135:7437Tr 1 533:380T2
r

2 1091:453T3
r 1 1231:43 T4

r 2 728:227T5
r

1 176:737T6
r (14b)

This expression normally yields errors of less than 1% for
non-polar compounds. The specific volume at each tempera-
ture can then be calculated by dividingVsat by the molar
mass of the penetrant. The density is the reciprocal of the
specific volume.

The procedure used here for the fitting of Eq. (10) was to
first generate the specific-volume/temperature data using the
cited empirical correlation (Eq. (13)), which then givesr ,
then the viscosity–temperature data using Eq. (12),
followed by fitting of the resultant curve by non-linear
regression (least-squares residual minimisation) to Eq.
(10) to find �D0; �K11=g1� and�K21 2 Tg1�: The uncertainties
in the three fitted parameters were estimated by the standard
errors in those parameters, and were generally quite small
with respect to their corresponding parameters. However,
the apparently small uncertainties are deceptive, since the
data used to generate the specific volume and viscosity data
are of very dubious quality, and would result in far larger
errors than given by the calculated uncertainties from the
regression step. An example of this problem is the use of
empirical correlations for the estimation of the specific-
volume/temperature data, described in further detail after
Eq. (12); this involves numerous estimations, each of
which may result in significant error. No simple means of
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estimating the real uncertainties and errors is available for
such a system.

The sensitivity of the predicted diffusion coefficients to
uncertainties in the output parameters from the fitting step
gives an indication of the potential errors introduced in that
step. This estimate neglects uncertainties from other sources
of error, and should only be used as a guide to the potential
errors introduced from the fitting procedure. A comparison
of the predicted diffusion coefficients generated at 298 K for
MMA, using the best estimated parameters generated in this
section, and data generated with all fitting parameters at
either extreme of the 95% confidence range, are shown in
Fig. 2. Note that the two extreme curves actuallyoveresti-
matethe potential errors introduced in the fitting step, since
all three output parameters are at their extreme values in
these cases, a situation that lies significantly outside the 95%
joint confidence range.

The critical temperatures were estimated by an empirical
correlation using group contribution methods [18]:

Tc � Tb

0:5671 SDT
1 �SDT

�2 �15�

where the temperatures are in K,Tb is the boiling point of
the penetrant, and theDT values are temperature contribu-
tions from each group as listed in Ref. [18]. Errors inTc

when estimated by this method are usually less than 2%.
The critical pressures were estimated by an empirical

correlation using group contribution methods [18]:

Pc � M1

�0:341 SDp�2
�16�

where theDp values are pressure contributions from each
group as listed in Ref. [18] andPc is in atmospheres. Critical
pressures calculated using this expression usually yield
errors of less than 5%.

The acentric factors were estimated by an empirical
correlation using group contribution methods [18]:

whereu � Tb=Tc:

The errors introduced by use of such correlations can be
significant, especially in this case where the errors intro-
duced by several correlations are likely to compound. In
the case of both BMA and MMA, some density data are
available for comparison [22]. Specific volume-temperature
data (based on the empirical correlations) for the two pene-
trants are shown in Fig. 3, with available literature data
points shown for comparison. It can be observed that the
data are quite close to linear for both systems (although
there is a slight deviation from linearity in the case of
MMA that is not observable on the scale of the figure). A
linear fit of the data for MMA gives a thermal expansion
coefficient of 1.34× 1023 cm3 g21 K21. The estimate of the
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Fig. 2. Sensitivity of the predicted diffusion coefficients to the output para-
meters from the non-linear regression step for MMA in PMMA at 298 K.
The dashed line corresponds to the diffusion coefficients predicted by the
best fit parameters, and the extreme (dotted) lines to the diffusion coeffi-
cients predicted by setting all output parameters to the values at either
extreme of the 95% confidence range for each parameter.
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Fig. 3. Specific volume versus temperature for (a) MMA and (b) BMA, as
predicted (unbroken lines) by Eq. (13). Experimental data points from the
literature [22] are shown for comparison (points).
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thermal expansion coefficient from the above empirical-
correlation method is significantly smaller:
9 × 1024 cm3 g21 K21. The predicted value of the density
at 298 K is also significantly different for this system:

0.870 g cm23 from the correlation, and 0.940 g cm23 from
the literature data. For MMA, the experimental specific
volume points deviate significantly from the prediction.
The prediction for BMA appears to be quite good at the
one temperature where existing data are available for
comparison. The effect of the discrepancy in the specific
volume data for MMA is to generate quite different values
of �D0; �K11=g1� and �K21 2 Tg1� from the non-linear
regression.

Fortunately, the different values of�D0 �K11=g1� and
�K21 2 Tg1� do not produce significantly different predicted
diffusion coefficients at either temperature, as shown in
Fig. 4, although there is a slight effect on thewp-depen-
dence. The viscosity–temperature dependences for the
two monomers calculated using the above treatment
used to obtain these parameters are shown in Fig. 5.
These data were generated by Eq. (12), using the speci-
fic volume (or density) data predicted using Eq. (13).
The fit to these dependences with Eq. (10) is indistin-
guishable from the input curve, which is not surprising
with three fitting parameters.

Use of Eq. (12) to predict viscosity–temperature data
may introduce some problems, due to both the relatively
high errors, and the forced correlation between the visc-
osity and density data, which is then used in the regres-
sion step. The forced correlation between density and
viscosity may also cause the resulting viscosity–
temperature plot to be less steep than expected, due to
the assumed linearity of the volumetric behaviour with
temperature. This may have an effect on the “curvature”
term �K21 2 Tg1� resulting from the fitting process,
which will in turn affect the curvature of both the
temperature andwp dependences of the diffusion coeffi-
cients predicted by Eq. (1).

The parameter~Vp
2 is sometimes [9] available in tabulated

data. The appropriate value for PMMA is found in Table 4
of the above reference. However, no value for PBMA is
available. Thus, this parameter was estimated as described
by Zielinski and Duda [23] fromTg2 (note the units in
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predicted by Eq. (12).

Table 1
Raw data for the calculation of the free volume parameters used for the
prediction of diffusion coefficients for BMA and MMA in PBMA and
rubbery PMMA

Parameter BMA or PBMA MMA or PMMA

M1 (g mol21) 142.2 100.12
Tg2 (K) [22] 293 388
V̂0

2 �298 K� (cm3g21) [22] 0.9497 0.8547
a2 (K21) [22] 6.10× 1024 5.70× 1024

�Cg
1�2 (dimensionless) [22] 9.7 32.2

�Cg
2�2 (K) [22] 169.6 80

d1 (J1/2 cm23/2 [22] 16.8 18.0
d2 (J1/2cm23/2) [27] 18.1 18.6
Tb (K) [22] 434 373
epol (cm3 g21 K21) [27] 5.35× 1024 6.10× 1024

� �B= �A� (dimensionless) 1.9 1.2
V̂0

1�293 K� (cm3 g21) [22] 1.119 1.068



this relation):

~Vp
2�cm3 g21� � 0:6224Tg2�K�2 86:95 �18�

Although Vrentas et al. [8] later described this empirical
correlation as giving poor agreement with fitted data for
some systems, no other estimates were available, and thus
this correlation was chosen by default.

The raw data that were used to calculate the necessary
parameters for each system are shown in Table 1, and the
derived quantities used in the calculations in Table 2.

4. Comparison with experimental diffusion coefficients

The experimental data of Griffiths et al. [16] are for BMA
and MMA oligomers in rubbery PBMA and PMMA

matrices over a range of weight-fraction polymer and of
temperature. The data of interest here are the diffusion coef-
ficients of the monomeric species in those matrices. The
combinations studied were MMA in PMMA, MMA in
PBMA, and BMA in PBMA. In most systems only a
small amount of the monomer was present, with the remain-
der of the “solvent” component (the diluent) being the satu-
rated analogues of the monomers: butyl isobutyrate in the
case of BMA, and methyl isobutyrate in the case of MMA.
In these cases, although the systems were truly ternary, it
has been assumed that the diluent has the same properties as
the penetrant, which allows the ternary systems to be treated
as the simpler analogous binary systems. This is probably a
reasonable approximation, since these analogues have simi-
lar structure, functionality, molecular size, and molecular
weight as their respective monomers.

The experimental data were for a range ofwp values in the
rubbery regimes, and two temperatures 298 and 313 K. All
measured diffusion coefficients were averages over several
readings, and should be regarded as of both high accuracy
and precision. It is important to note that the data show a
qualitative change in diffusion coefficients as the polymer
weight fraction goes from effectively infinite dilution to
values of a few percent. This may possibly be an experi-
mental artefact due to thermal diffusion effects [24] or, as
discussed by Griffiths et al. this probably corresponds tocp

(where polymer chains start to overlap). It is possible that
the diffusion mechanism is different above and belowcp,
and that the free volume mechanism is only valid when
chains overlap, i.e. abovecp.

Figs. 6–8 show the comparison between the experimental
diffusion coefficients and those predicted from the free-
volume formulation of Vrentas and Vrentas [9] using the
parameter set described in the previous section. While the
accord with MMA in PMMA is good, it is only moderate for
MMA in PBMA, and very poor for BMA in PBMA.

The sensitivities of the predicted diffusion coefficients for
each system and temperature to uncertainties in the output
parameters from the non-linear regression step are shown in
Fig. 9, and to the aspect ratios are shown in Fig. 10. The
experimental data are shown for comparison in each case.

The extreme curves on the plots of the sensitivities to the
output parameters from the non-linear regression step are
again taken with all output parameters set at the extreme
ends of the 95% uncertainty regions for each parameter. As
previously stated, this is likely to overestimate the uncer-
tainties from these sources. The extreme curves in the sensi-
tivity plots for the aspect ratios of the penetrants are also for
cases where the input parameters used to generate these
curves are outside the reasonable ranges estimated for the
uncertainty limits. The values chosen for the ranges of the
aspect ratios (based on examination of the molecular models
for the penetrants) are for MMA: 1–1.4 (best estimate: 1.2);
and for BMA: 1.3–2.5 (best estimate: 1.9).

It is clear from these figures that reasonable uncertainties
in these parameters for both sets of parameters cannot
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Table 2
Calculated free volume parameters used for the prediction of diffusion
coefficients of MMA and BMA in PBMA and rubbery PMMA

Parameter BMA or PBMA MMA or PMMA

V̂0
1�0� �� V̂p

1� (cm3 g21) 0.771 0.871
~V0

1�0� (cm3 mol21) 130.4 86.9
V̂0

2�0��� V̂p
2� (cm3 g21) 0.788 0.762

~Vp
2 (cm3 mol21) 85.4 135

f G
H2 (dimensionless) 0.103 0.00456
K22 (K) 169.6 80
�K12=g2� (cm3 g21 K21) 2.08× 1024 1.28× 1024

g2 (dimensionless) 2.79 3.88
a c2 (K21) 8.23× 1024 2.37× 1024

jL (dimensionless) 1.53 0.64 in PMMA
0.91 in PBMA

j (dimensionless) 0.89 0.58 in PMMA
0.79 in PBMA

Ep (J mol21) 8927 2127 in PMMA
0 in PBMA

�D0 (cm2 s21) 8.68× 1024 1.27× 1023

�K11=g1� (cm3 g21 K21) 9.42× 1024 6.91× 1024

�K21 2 Tg1� (K) 282.41 72.26
V̂0

2�Tg2� (cm3 g21) 0.9497 0.8754
~Vc (cm3 mol21) 458 311
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Fig. 6. Predicted (dashed line, as obtained with the completely a priori
treatment) and the observed diffusion coefficients for MMA in PMMA:
(a) at 298 K; (b) at 313 K.



account for the discrepancies between the predicted diffu-
sion coefficients (and theirwp-dependence) and the experi-
mental values for the PBMA systems.

In the case of the MMA in PMMA (Fig. 6), the agreement
between theory and experiment is fairly good at 298 K, with
a larger deviation at 313 K. The only large apparent discre-
pancy is at very lowwp (here atwp � 0�; which is to be
expected for all of the systems studied here, and corresponds
to the apparent anomaly observed in the experimental diffu-
sion coefficients at very lowwp [16]. Note that although in
both cases the absolute values closely correspond, the slopes
of the variation withwp are significantly different. This
system is probably the best studied of the systems examined
here, and thus is most likely to have accurate raw data for
the estimation of the parameters used in the prediction of the
diffusion coefficients.

This system has been previously examined with simpler,
and less a priori, formulations of the Vrentas free volume
model. Griffiths et al. [16] used the model in the correlative
sense to generate best-fit parameters for their data, based on
modified parameters derived from fits to previous data by
Faldi et al. [25] and Waggoner et al. [26] A comparison of

the parameters is shown in Table 3, and the predicted diffu-
sion coefficients at 298 K in Fig. 11. The parameter set used
in Griffiths et al. provided a quite good fit to the experimen-
tal data, and there are small but significant differences
between the predicted diffusion coefficients using the
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Fig. 7. Predicted (dashed line, as-obtained with the completely a priori
treatment) and observed diffusion coefficients for MMA in PBMA: (a) at
298 K; (b) at 313 K.
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Fig. 8. Predicted (dashed line, as-obtained with the completely a priori
treatment) and observed diffusion coefficients for BMA in PBMA: (a) at
298 K; (b) at 313 K.
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Fig. 9. Sensitivity of the predicted diffusion coefficients for each system to
the output parameters from the non-linear regression step: (a) MMA in
PMMA; (b) MMA in PBMA; (c) BMA in PBMA. The dashed lines corre-
spond to the diffusion coefficients predicted by the best fit parameters, and
the extreme (dotted) lines to the diffusion coefficients predicted by setting
all output parameters to the values at either extreme of the 95% confidence
range for each parameter.



present totally a priori parameter set. This is not surprising,
since the parameters in the study of Griffiths et al. were
adjusted so as to provide a good fit to the experimental
data, whereas the current parameter set are predicted in an
a priori sense from physical data.

The case of MMA diffusing in PBMA poses a more strin-
gent test. Most of the parameters for the MMA penetrant can
be directly transferred from the MMA in PMMA system,
since a number of these parameters are predicted to be
intrinsic to the monomer, rather than to the system as a
whole. Since the fit to the MMA in PMMA data is relatively
good, it would be expected that the parameter set for MMA
in PBMA would predict diffusion coefficients in good agree-
ment with experiment. However, the observed differences
(Fig. 7) between the predicted and the experimental data are
significant, both in terms of absolute values and slope.

It was found that the agreement between the a priori
theory and experiment in this system is not particularly
good, with the data differing by a factor of about 2–3
throughout the range tested, at both temperatures. This is
despite a number of the parameters being the same as the
MMA in PMMA system, where the agreement between
theory and experiment is good. Now, there are a number
of parameters for which there is considerable uncertainty,
including the parameter~Vp

2 for the PBMA matrix, for which
no good parameter estimate scheme could be found.
However, the sensitivity analyses show that reasonable
variations in most of these parameters cannot account for
the observed discrepancies, with the exception being the
value ofEp, which has a significant effect on the absolute
values of the predicted diffusion coefficients. The uncer-
tainty in the value of�D0 is expected to be small, but since
the fitting was based on predicted data, the errors may be
larger than otherwise expected. Changing the value of�D0

will have a significant effect on the absolute values of the
diffusion coefficients at both temperatures, but not on the
wp-dependence. Now, the discrepancies here are not only in
the absolute values of the diffusion coefficients, but also in
the wp-dependence. Thus, allowing for uncertainties in the
value of �D0 is not sufficient to explain the observed
discrepancies.

Increasing the value ofEp to approximately 2 kJ mol21 in
this system dramatically improves the agreement between
theory and experiment, although the slope with respect towp

is still in poor agreement (see Fig. 12). Such a difference in
predicted values ofEp is certainly reasonable, since the
values of the solubility parameters for the penetrant and
matrix are usually quoted as fairly broad ranges in the litera-
ture. However, the value of the solubility parameter used in
this calculation ofEp for the MMA penetrant is the same as
that used in the calculations for MMA in PMMA, which
gives good agreement with experiment in that case. Thus,
changing the value of the solubility parameter for MMA in
this case is not internally consistent: good agreement for
both systems cannot be reached simultaneously. Further-
more, the primary objective of this study is to see if a priori
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Fig. 10. Sensitivity of the predicted diffusion coefficients to the aspect ratio
� �B= �A� values used in the calculations, at each temperature: (a) MMA in
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correspond to the diffusion coefficients predicted by the best-fit parameters,
the dashed lines to those predicted at the low end of the� �B= �A� range, and the
dotted lines to those predicted at the high end of the� �B= �A� range. The� �B= �A�
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estimates of the parameters will give good agreement with
experiment, since this is exactly the case that may be faced
when working with a system for which there are no experi-
mental data. Only in the case where limited experimental
data are available can one make changes in the model para-
meters to improve agreement between theory and experi-
ment. In this case, given one experimental data point (above
cp), the experimental data can be reasonably well predicted
across the entire range by adjusting one parameter,Ep.

The final system considered here was BMA penetrant in
PBMA matrix. In this case, there are no parameters avail-
able for guidance or comparison. That is, for the purposes of
this study, this is a completely new system. As can be seen
in Fig. 8, the agreement between theory and experiment is
very poor at both temperatures, differing by more than an
order of magnitude in all cases, up to approximately 4 orders
of magnitude at highwp (where the system is still rubbery).
The major reasons for the discrepancy in this case appear to
be in the relatively high predicted value ofEp (approxi-
mately 9 kJ mol21), and a poor estimation of thewp depen-
dence, which is most apparent atwp � 0:9: The actual
activation energy,Ea, which of course is different fromEp,

is found from numerical differentiation of an Arrhenius plot:
Ea � R2�lnD�=2�21=T� (these plots generated by Eq. (1) are
slightly curved but the temperature dependence ofEa so
obtained is negligible). The predictedEa is approximately
23.1 kJ mol21, compared with the experimental estimate of
17.5 kJ mol21.

The high value ofEp is the major cause of the discrepan-
cies, and reduction ofEp to zero provides a fairly good fit at
the low wp end. However, the large drop in experimental
diffusion coefficients atwp � 0:9 cannot be predicted using
this modification of the parameter set. Thus, the anomalous
value ofEp is not the only problem for this system. This is
the only system which is rubbery over a wide range ofwp,
and thus where the diffusion coefficients can be compared
over such a wide range ofwp values. The poor accord
suggests that thewp dependence of the diffusion coefficients
cannot be predicted using this parameter evaluation scheme
in the general case. Note also that although this system is the
furthest from those previously studied (of the three systems
studied here), the parameter evaluation scheme was the
same in each case, so the lack of previous data had no effect
on the results. It is, however possible, that the input data
(density etc.) used to estimate the free volume parameters
were not of the same reliability as for the well-studied
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Table 3
Comparison of predicted free volume theory parameters with those of Griffiths et al. [16] (p) This term was incorporated into the term�K22 2 Tg2� in the earlier
version of the theory used in Griffiths et al.

Parameter Current study Based on Faldi [25] Based on Waggoner [26]

Ep (J mol21) 2127 3255 0
V̂p

1 (cm3 g21) 0.871 0.87 0.771
V̂p

2 (cm3 g21) 0.762 0.757 0.788
j (unitless) 0.644 0.60 0.92
Tg2 (K) 388 392 392
K22/ (K ( p)) 80 52.4 91
�D0 (cm2 s21) 1.27× 1023 2.74× 1023 (adjusted to 1.61× 1023 in Ref. [16]) 9× 1025

�K12=g2� (cm3 g21 K21) 1.28× 1024 4.77× 1024 3.05× 1023

�K11=g1� (cm3 g21 K21) 6.91× 1024 8.15× 1024 1.17× 1023

�K21 2 Tg1� (K) 72.26 0 251.37

0.0 0.1 0.2 0.3 0.4
0

1x10-9

2x10-9

3x10-9

4x10-9

D
(m

2
s-1

)

wp

Fig. 11. Comparison of predicted data in current study for MMA in PMMA
with those predicted using the parameter set of Griffiths et al. [16] at 298 K.
Circles: diffusion coefficients predicted with the current model and para-
meters; diamonds: using the parameters of Faldi et al. [25] triangles: using
the parameters of Waggoner et al. [26] The unbroken line links experimen-
tal data points for comparison.
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Fig. 12. Predicted (dashed lines) and observed diffusion coefficients (indi-
vidual points) for MMA in PBMA, usingEp � 2 kJ mol21 : (a) at 298 K;
(b) at 313 K.



MMA/PMMA combination. This may explain why the
discrepancies were largest for this system, but this system
was also the most critical test of the parameter evaluation
scheme. Thus, it would appear that the scheme cannot
always be used reliably to predict diffusion coefficients
(and activation energies for diffusion) for completely new
systems, especially over a widewp range.

A final scenario was considered for each of the systems:
given diffusion coefficients for the penetrants at two
temperatures at the samewp, would it then be possible to
improve the agreement between theory and experiment by
using the temperature dependence of the experimental data
to modify the predicted value ofEp? Experimental diffusion
coefficients at two temperatures under the same conditions
allow a crude estimate of the activation energy for the pene-
trant diffusion in the system. The free volume expression for
the diffusion coefficients in Eq. (1) can be broken into
two temperature-dependent and temperature-independent
components. The temperature-dependent part can be further
divided into two independent parts: theEp term, and the free
volume term. The activation energy can be considered to be
the sum of two parts:Ea � Ep 1 E2; where the termE2

contains the temperature dependence of the free volume
contributions. Thus, by adjusting the value ofEp, it would
be possible to set the effective activation energies to be
equivalent �i:e: Ea;experiment� Ea;predicted� at that particular
value of wp. This might improve the agreement between
theory and experiment for the predicted diffusion
coefficients.

This strategy was attempted atwp � 0:1 for all three
systems, and it was found that this approach generally did
not improve the agreement between experiment and theory.
In fact, in the case of MMA diffusion in PBMA, this
approach predicted anEp value of approximately
10 kJ mol21 whereas the a priori prediction was approxi-
mately 0 kJ mol21. It was earlier established that, at a single
temperature, anEp value of approximately 2 kJ mol21 was
more appropriate. The most likely reasons for this discre-
pancy are as follows: poor estimates of the experimental
activation energies (use of only two points, plus experimen-
tal uncertainties) and errors in either the theory or the free
volume terms (quite possible). Note that this discrepancy
also highlights the fact that the predicted activation energies
are also normally quite poor, even when the absolute agree-
ment between theory and experiment are reasonably good
over a limited temperature range, as in the case of MMA
diffusing in PMMA. In that case, the experimental and
predicted values ofEa are ,12 and,9 kJ mol21, respec-
tively. Thus a significant change inEp would be necessary to
compensate for this, which would increase the discrepancies
between theory and experiment if extrapolated to a wider
temperature range.

This suggests that some of the sources of the discrepan-
cies might be in the free volume terms. This is also implied
in Fig. 6, where the curves cross at 298 K atwp � 0:2; but
cross atwp � 0:35 at 313 K.

5. Discussion

Several of the discrepancies between the predicted
and experimental diffusion coefficients may be attribu-
ted to the sometimes large uncertainties in the raw
experimental data (or poor correlations) used in the
parameter estimation schemes. The prediction of some
of the free volume parameters is highly sensitive to the
input data.

The prediction ofEp is an important example of this
situation. The literature data for the solubility parameters
for the penetrants and polymers are given as a range, which
is sometimes quite broad. The functional form for the
dependence ofEp on these data is very sensitive to devia-
tions in these parameters, which can result in large differ-
ences in the predicted values ofEp. Furthermore, the fitting
step to produce the correlation used does not fit all of
the original data, and some points deviated significantly
from the curve. This suggests that the correlation is
only very approximate, and may fail quite badly for
some systems. This point is particularly important for
the prediction of diffusion coefficients, since the model
is very sensitive to the value ofEp, and this quantity
makes a large difference to both the absolute values of
the diffusion coefficients of the penetrants and to their
predicted temperature dependence.

Another area where significant errors may be generated is
in the non-linear regression step to evaluate�D0; �K11=g1�;
and�K21 2 Tg1�: Since the fitting is to a correlation of more
than one parameter-temperature data set, uncertainties in
any of the parameter sets may lead to large errors in
the final output parameters.�D0 and �K11=g1� particularly
have a significant effect on the predicted diffusion coef-
ficients. The parameter�D0 affects the absolute values of
the predicted diffusion coefficients at all temperatures
and compositions. The parameter�K11=g1� has a strong
effect on the curvature of the predicted plots of the
diffusion coefficients versuswp, and may be responsible
for the common failure to predict their dependence on
sample composition. Overall, the best predictions are a
result of reliable input data. It is recommended that
correlations of the type used here be used only where
necessary, and that the user be aware of the potential
for significant errors in this step.

As stated, reasonable estimates of the uncertainties in the
values of these three fitted parameters cannot bring
about good accord with experiment for the BMA
system. Errors in the estimation of other parameters,
such as the aspect ratio, and uncertainties in the output
parameters resulting from the fitting of the viscosity–
temperature data, were found to be relatively small. The
observed discrepancies between predicted and observed
diffusion coefficients could not be attributed to these
sources for the systems examined. Thus, these areas
should be considered minor sources of error compared
with those described above.
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6. Conclusions

The predictions of free volume theory using the parameter
estimation scheme of Vrentas and Vrentas were tested for
several systems. The predictions were made with limited
physical data and empirical correlations, and could be
considered a worst-case examination of the predictive
power of the theory and parameter examination scheme.

Use of the parameter estimation scheme of Vrentas and
Vrentas is likely to work best in combination with limited
experimental data, where the possibility for correction of the
parameters may exist by comparison of prediction with
experiment. The two most readily adjustable parameters,
for which there may be considerable uncertainty, are�D0

and Ep. At a single temperature, changing either of these
has the effect of shifting the entire predicted curve.
However, changing the value ofEp will change the tempera-
ture dependence of the predicted data, so this approach
should be used more carefully, and is best used when the
value ofEp is obviously incorrect, there exist experimental
data which suggest this change, or other changes would not
be reasonable.

The predicted diffusion coefficients using the parameter
estimation scheme of Vrentas and Vrentas were generally in
poor agreement with the corresponding experimental data of
Griffiths et al. The exception was the MMA diffusing in
PMMA, where the agreement of the absolute values of the
diffusion coefficients for the two data sets was fairly good,
but the agreements for the temperature andwp dependences
were not. The absolute values of the predicted diffusion
coefficients for the other systems examined here were
always rather poor. This was particularly the case for
BMA diffusing in PBMA, for which there were no
previously existing data. The problem was exacerbated in
this system by the problem of parameter generation, where
~Vp

2 is not available in tabulated data. This system highlights
the problem of predicting diffusion coefficients over a wide
range ofwp values, where thewp dependence is often poorly
predicted, and thus large deviations between theory and
experiment are possible.

The agreement between the predicted and experimental
data could be improved in some cases by limited adjustment
of the predicted parameters, with the assistance of limited
experimental data. This could in some cases improve the
agreement in the absolute values of the diffusion coefficients
or temperature dependences, but not thewp dependences.
Certainly the agreement could be improved by adjusting a
large number of parameters, but the objective of this study
was to test the predictive power of the parameter estimation
scheme of Vrentas and Vrentas with limited or no experi-
mental data.

It must be admitted that some of the procedures used to
obtain the free-volume parameters are of a quality that is
unable to provide a true test of the adequacy of the Vrentas
treatment to provide a reliable a priori fit: for example, the
density/viscosity data correlation and the crude method for

estimating the aspect ratio could certainly be improved if
better data were available. However, the procedures used
here test the usefulness of the approach forpractical appli-
cation: for example, the effort required to obtain better visc-
osity and density data for these common monomers is about
the same as that required to measure the diffusion coeffi-
cients themselves!

The overall usefulness of the parameter estimation
scheme and theory depends on the overall expectations of
the user, and the amount of existing experimental data. In
some cases, the model predicts diffusion coefficients that are
within a factor of two of the experimental quantities, which
may be acceptable in some cases. However, for other
systems, the discrepancies are up to several orders of magni-
tude, which is rarely likely to be considered acceptable. The
agreement between experiment and theory in these cases
may sometimes be improved with the assistance of limited
experimental data. The ability of the parameter estimation
scheme to predict experimental data over a wide range of
temperature andwp appears to be generally poor, which
restricts the utility of the scheme to limited ranges of
these quantities. If highly accurate predictions over a wide
range of conditions is desired, the scheme is unlikely to be
sufficient; however, if approximate diffusion coefficients in
a narrow range of conditions are desired, acceptable predic-
tions may be made in some cases, especially if there exist
some corresponding experimental data.
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